Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.).
نویسندگان
چکیده
Plants modify metabolic processes for adaptation to low phosphate (P) conditions. Whilst transcriptomic analyses show that P deficiency changes hundreds of genes related to various metabolic processes, there is limited information available for global metabolite changes of P-deficient plants, especially for cereals. As changes in metabolites are the ultimate 'readout' of changes in gene expression, we profiled polar metabolites from both shoots and roots of P-deficient barley (Hordeum vulgare) using gas chromatography-mass spectrometry (GC-MS). The results showed that mildly P-deficient plants accumulated di- and trisaccharides (sucrose, maltose, raffinose and 6-kestose), especially in shoots. Severe P deficiency increased the levels of metabolites related to ammonium metabolism in addition to di- and trisaccharides, but reduced the levels of phosphorylated intermediates (glucose-6-P, fructose-6-P, inositol-1-P and glycerol-3-P) and organic acids (alpha-ketoglutarate, succinate, fumarate and malate). The results revealed that P-deficient plants modify carbohydrate metabolism initially to reduce P consumption, and salvage P from small P-containing metabolites when P deficiency is severe, which consequently reduced levels of organic acids in the tricarboxylic acid (TCA) cycle. The extent of the effect of severe P deficiency on ammonium metabolism was also revealed by liquid chromatography-mass spectrometry (LC-MS) quantitative analysis of free amino acids. A sharp increase in the concentrations of glutamine and asparagine was observed in both shoots and roots of severely P-deficient plants. Based on these data, a strategy for improving the ability of cereals to adapt to low P environments is proposed that involves alteration in partitioning of carbohydrates into organic acids and amino acids to enable more efficient utilization of carbon in P-deficient plants.
منابع مشابه
Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress
Barley (Hordeum vulgare L.) is the most salt-tolerant cereal crop and has excellent genetic and genomic resources. It is therefore a good model to study salt-tolerance mechanisms in cereals. We aimed to determine metabolic differences between a cultivated barley, Clipper (tolerant), and a North African landrace, Sahara (susceptible), previously shown to have contrasting root growth phenotypes i...
متن کاملMetabolite Profiling for Leaf Senescence in Barley Reveals Decreases in Amino Acids and Glycolysis Intermediates
Leaf senescence is a long developmental phase important for plant performance and nutrient management. Cell constituents are recycled in old leaves to provide nutrients that are redistributed to the sink organs. Up to now, metabolomic changes during leaf senescence have been mainly studied in Arabidopsis (Arabidopsis thaliana L.). The metabolite profiling conducted in barley (Hordeum vulgare L....
متن کاملCloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants.
Nicotianamine aminotransferase (NAAT), the key enzyme involved in the biosynthesis of mugineic acid family phytosiderophores (MAs), catalyzes the amino transfer of nicotianamine (NA). MAs are found only in graminaceous plants, although NA has been detected in every plant so far investigated. Therefore, this amino transfer reaction is the first step in the unique biosynthesis of MAs that has evo...
متن کاملMetabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling
During grain filling in barley (Hordeum vulgare L. cv. Barke) reserves are remobilized from vegetative organs. Glumes represent the vegetative tissues closest to grains, senesce late, and are involved in the conversion of assimilates. To analyse glume development and metabolism related to grain filling, parallel transcript and metabolite profiling in glumes and endosperm were performed, showing...
متن کاملMetabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense
Barley (Hordeum vulgare L.) is among the most stress-tolerant crops; however, not much is known about the genetic and environmental control of metabolic adaptation of barley to abiotic stresses. We have subjected a genetically diverse set of 81 barley accessions, consisting of Mediterranean landrace genotypes and German elite breeding lines, to drought and combined heat and drought stress at an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant & cell physiology
دوره 49 5 شماره
صفحات -
تاریخ انتشار 2008